Microintegrated Optics for Advanced Bioimaging and Control
Microintegrated Optics for Advanced Bioimaging and Control
Optical methods have been used for hundreds of years in biology. There is significant (and general) need for making these tried and true methods more accessible & portable as well as to make new optical techniques available to laboratory researchers. MOABC focuses on the integration of optical technology into microscopic and microfluidic systems, a need supported by unique facilities and capabilities that serve as the foundation of a very useful community resource.
Commercial microfluidic systems under development for the past decade have aimed at high margin application niches such as pharmaceutical research and drug discovery. These systems are predominantly disposable microfluidic cartridge-based systems, yet require a bench-top or larger “main-frame” interface. Nearly all the complexity, cost, and reliability limitations are associated with the optics, fluidics, and electronics components in the mainframe. For research and diagnostic platforms to impact broader markets and become widespread tools both inside and outside of the laboratory, the hardware must be simplified and miniaturized. Functions currently performed by peripheral hardware must be integrated directly into the microscale platform. Our long-term goal focuses on reducing macroscale optics and electronics to an “optical lab-on-a-chip” compatible with the fluidics lab-on-a-chip paradigm by developing new methods of biological measurement and manipulation based on microintegrated optics.
In addition to this, researchers in our center are also investigating biopolymer systems for tissue engineering and drug delivery, biosensors, and metabolic engineering. In the body, cells that make up all of our tissues are influenced by many factors, including soluble signals such as chemokines or cytokines, insoluble signals that are components of the extracellular matrix surrounding the cells, the interaction of various populations of cells with each other, and mechanical signals. Additionally, cells make decisions based on their intracellular signaling pathways and their metabolism. By studying these various signals with materials and modeling, we can gain a greater insight for how tissues are formed and maintained, and we can use this knowledge to regenerate damaged or diseased tissues, and also to better understand how diseases start and progress and how they can be treated. We can design sensors to detect a variety of biological processes to better understand what the cells are exposed to in their environment and how they respond.

News
- Pre-med at Mines? A path to medical school is now paved
For undergraduate students who know medical school could be in their future, the Quantitative Biosciences and Engineering (QBE) program offers a unique path. But there's more than one way for a M … - Christine Yee: "I chose Mines because of the positive reputation for shaping well-rounded engineers prepared for a long-term career."
Why did you choose to come to Mines? What have you enjoyed most about being here? I chose to come to Mines because of the positive reputation it has for shaping well-rounded engineers prepared for a l … - Mines researchers aim to bring more science into decision-making through AGU Local Science Partners
Geology Professor Kamini Singha and postdoctoral researcher Joel Singley are members of the inaugural cohort of a new American Geophysics Union program to empower scientists to build sustainable partn … - Colorado School of Mines celebrates Spring 2022 Undergraduate Commencement
Colorado School of Mines celebrated its Spring 2022 Undergraduate Commencement on May 13, conferring a total of 927 bachelor’s degrees during three in-person ceremonies at Lockridge Arena. …